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ABSTRACT

A new primal extreme point algorithm for solving capacitated trans-
portation problems is developed in this paper. This algorithm, called the
generalized alternating path (GAP) algorithm, is a special purpose method
specifically designed to take advantage of the bipartite structure and the

often pervasive primal degeneracy of transportation problems.




1. INTRODUCTION

The purpose of this paper is to present a primal extreme point algorithm
for solving transportation problems which both circumvents and exploits degen-

eracy. The algorithm, called the generalized alternating path (GAP) algorithm,

is an extension of the algorithms presented in [5, 6] and a specialization of
the algorithm presented in [9]. We have undertaken in this paper to fill the
vacant space between more general and more specialized solution procedures
because of the importance of transportation problems as a problem class, and
also because of unique structural features of these problems that require cor-
respondingly unique adaptations to be handled efficiently. In particular, our
development focuses on relationships that assume a special form for the trans-
portation problem, and on their implications for implementation.

The generalized alternating path algorithm is based on the characteriza-
tion of a special type of basis, called the GAP basis. The GAP bases comprise
a subset of the bases that are capable of leading to an optimal solution if
one exists. We show by a particularly simple proof that it is sufficient to
examine only the bases that lie in this subset at each iteration of the al-
gorithm.

From a practical standpoint, we further demonstrate how the graphical structure
of these bases can be used to streamline the computer implementation of the pro-
cedure. Thus, the GAP algorithm has readily identifiable computational advan-
tages over other specializations of the primal simplex algorithm to transpor-
tation problems [11, 12]. These procedural innovations are also particularly

relevant to recent efforts in the literature [l4, 16] to identify the merits of

alternative approaches to exploiting bipartite network structures.




E 2. BACKGROUND MATERIAL

A capacitated m x n transportation problem may be defined as:
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where I is called the set of origin nodéé; J is called the set of destination

nodes, A is the set of admissible arcs, and c is the cost of shipping a unit

ij

from origin node i to destination node j.
i The dual of the capacitated transportation problem may be stated as:
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ij
{ where Ri and Kj are called the node potentials of the origin and destination

nodes, respectively.

A familiarity with graphical interpretations of the transportation problem
and the operations of the primal simplex method specialized to this framework is
especially useful for understanding the results of this paper. We summarize these

;ﬁ’ ideas in this section for completeness (1, 2, 4, 10, 12, 15, 19, 20]. At the same
-
time, we will introduce terminology that will subsequently be used to characterize

the GAP algorithm.
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The transportatidﬁ'probléﬁmaéy-Bgmrebresented as a bipartifgugrébh consist-
ing of a set of origin nodes with supplies a; and a set of destination nodes
with demands bj' Directed arcs from origin nodes to destination nodes accommo-
date the transmission of flow and incur a cost if flow exists. The objective
is to determine a set of arc flows that satisfy the supply, demand, and capacity
restrictions at minimum total cost.

A bounded variable simplex basis for an m x n problem corresponds to a
spanning tree with m + n - 1 arcs. The flows on many of the basic arcs are
frequently equal to zero or the upper bounds for these arcs. This situation
provides a degenerate basic solution, and sometimes causes the simplex method
to examine several alternative bases for the same extreme point before moving

to an adjacent extreme point.

In solution procedures based on a graphical representation, the bases of
the simplex method for transportation problems are normally treated as rooted
trees [1,2,4,8,10,11,12,13,15,18,19,20]. Conceptually, the root node may be
thought of as the highest node in the tree with all of the other nodes hanging
below it. Those nodes in the unique path from any given node i to the root are
called the ancestors of node i, and the immediate ancestor of node i is called
its predecessor.

Figure 1 illustrates a rooted basis tree, the predecessors of the nodes,
and the basic flow values, for a 3 x 6 transportation problem. Notationally,
0i denotes the ith origin node and Dj denotes the jth destination node. The
aumber beside each link (arc) in the basis tree indicates the flow on this arc
imparted by the basic solution. (Note that the nonbasic arcs at their upper
bound, are not shown.) Predecessors of nodes are identified in the NODE/PREDE-
CESSOR array. For example, as seen from this array, the predecessor of origin
node 2 is destination node 1. The root of the tree is node 0l and has no pre-

'

decessor.




Node

Predecessor

01 None
02 D1
03 D1

D1 o1

1 D2 o1 j

.‘ D3 o1 |
D4 03 i
D5 03

' D6 03

Figure 1 — Rooted Basis Tree
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It is important to note that the direction of the links in Figure 1 cor-
respond to the orientation induced by the predecessor ordering and do not
necessarily correspond to the direction of the basis arcs in the transportation
problem. However, the direction of the basic arcs are known from the bipartite
property of the transportation problem; i.e., all problem arcs lead from origin
nodes to destination nodes.

In subsequent sections the term 0-D link and D-O link will be used to

refer to links in a rooted basis tree that are directed from an origin node to
a destination node and vice versa, according to the orientation imparted to the
basic arcs by the predecessor indexing. For example, in Figure 1, 01-D1 is an
0-D link while D1-02 is a D-0 link. Additionally, basic arcs with a flow greater

than 0 will be referred to as lower leeway links and basic arcs with a flow less

than their upper bounds will be called upper leeway links. Basic arcs that are

both lower and upper leewav links will be called double leeway links.

Basis Exchaﬁggé

The fundamental pivot,or basis exchange, step of the simplex method will
now be briefly reviewed in the graphical setting. Assume that a feasible
starting basis has been determined and is represented as a rooted tree. To
evaluate the nonbasis arcs to determine whether any of them 'price out"
profitably, and therefore are candidates to enter the basis, it is necessary
to determine values for the dual variables Rj, ieI, and Kj, jeJ, which satisfy

complementary slackness; i.e., which yield R; + Kj = Cij for each basic arc.

There is a unique dual variable associated with each node in the basis
tree. For this reason the dual variables--or their values--are often referred
to as node potentials. Because of redundancy in the defining equations of the
transportation problem (and in network problems generally), one node potential

may be specified arbitrarily. The root node is customarily selected for this




purpose and assigned a potential of zero, whereupon the potentials of the
other nodes are immediately determined in a cascading fashion by moving down
the tree and identifying the value for each node from its predecessor using
the equation Ri - Kj = Cij' Highly efficient labeling procedures for tra-
versing the tree to initialize and update these node potential values are
described in [1,2,4,10,15,19,20].

A feasible basic solution is optimal if the updated cost coefficient
m.. (= Ri + Kj - Cij) is nonpositive for all the nonbasic arcs with flow equal

1]

zero and nonnegative for all nonbasic arcs with flow equal to U If the

s g (0
solution is not optimal, then a nonbasic arc which violates the nonnegativity
or nonpositivity requirement for ﬂij is selected to enter the basis. If the
flow on the selected arc is zero (UijL then the simplex method attempts to

increase (decrease; this flow. The arc to leave the basis is determined by:

(1) finding the unique path in the basis tree, called the basis equivalent

path, which connects the two nodes of the entering arc, and (2) isolating a
blocking arc in this path whose flow goes to zero or its upper bound ahead

of (or at least as soon as) any others as a result of increasing or decreasing
the flow on the entering arc.

In the basis equivalent path all arcs an even number of links away from
the entering arc are called even arcs, and all arcs an odd number of links away
are called odd arcs. (The incoming arc itself is considered the "0 arc," and
hence is even). An increase (decrease) in the flow of the incoming arc causes
a corresponding increase (decrease) in the flow of all even arcs and a corres-
ponding decrease (increase) in the flow of all odd arcs. Thus, if an odd arc
already has a 0 flow or an even arc already has a Ui' flow, then such an arc

qualifies as a blocking arc and the incoming arc cannot be assigned a nonzero

flow change.



To illustrate, assume that the starting basis is the one given in Figure 1
and the entering arc is (02,D2). The basis equivalent path for (02,D2) is
D2-01-D1-02. Note that this path can be easily determined by tracing the pre-
decessors of 02 and D2 to their point of intersection [10,13,20]. As flow is
increased on the entering arc the flow on the arc (01,D2), which is an odd number
of links away, must be decreased. However, its flow is already zero, and hence
(01,D2) qualifies as a blocking arc. When arc (02,D2) is brought into the basis,
arc (01,D2) must be dropped (since there are no other blocking arcs in this
case). In addition, the pivot (or basis exchange) is degenerate since no flow
increase occurs.

Once the entering and leaving arcs are known, the basis exchange is completed
simply by updating the flow values on the basis equivalent path and determining
new node potentials for the new basis tree. Only a subset of the node potentials
change during a pivot and these can be updated rather than being determined
from scratch.

To update the node potentials, assume that the nonbasic arc (p,q) is to
enter into the basis and the basic arc (r,s) is to leave the basis. 1If arc
(r,s) is deleted from the basis (before adding arc (p,q), two subtrees are
formed, each containing one of the two nodes of the incoming arc (p,q). Let
K denote the subtree which does not contain the root node of the full basis.

The node potentials for the new basis may be obtained [i0] by updating only
those potentials of the nodes in K, as follows. If p is in K, subtract

§ = Rp + Kq - cpq from the potentials of each origin node in K and add § to
the potential of each destination node in K. Otherwise, q is in K and - is

used in the above operations. (Note that § > 0 if arc (p,q) is nonbasic with

zero flow and § < 0 if arc (p,q) is nonbasic with qu flow).
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3. GENERALIZED ALTERNATING PATH BASIS DEFINITION AND CONSTRUCTION

The new generalized alternating path algorithm for transportation problems
developed in this section is based upon the primal simplex method as described
above, and extends the special alternating path algorithm for the assignment
and semi-assignment problems [5,6]. The major mathematical distinction of the

new method in contrast to the simplex method, is that it does not consider all

feasible bases to be candidates for progressing to an optimal basis. That is,
the simplex method allows a feasible spanning tree of any structure whatsoever

to be included in the set of those that are eligible for consideration as

"improving bases" along the path to optimality. However, it will be shown
that if a transportation problem has an optimal solution then it also has an
optimal solution with a unique basis tree structure, dubbed the generalized

alternating path (GAP) structure. Furthermore, we will show that it is possible

to restrict attention at each step to bases with this structure. In particular,
the proposed algorithm is a procedure designed to exploit the properties of

the GAP basis structure in a manner that substantially reduces the impact of h
degeneracy and the number of arithmetic operations required to solve the trans-
portation problem.

Definition: A rooted basis tree for a capacitated transportation problem is

a generalized alternating path (GAP) basis if 4

1. The root node is an origin node.

2. All O-D links are lower leeway links.

3. All D-0 links are upper leeway links.

Definition: A generalized alternating path (GAP) is an elementary path such

that all odd arcs are lower leeway links and all even arcs are upper leeway
links, or vice versa. (No restriction is placed on what type of arc should

appear first, or on the total number of arcs in the path.) Thus, in the GAP

basis, every path from a given node to an ancestor is a generalized alternating path.




Lemma 1: Given an arbitrary feasible extreme point solution to a capacitated
transportation problem, it is possible to identify a GAP basis, possibly in-
cluding artificial arcs with O flows, that assigns the same flows to all ad-
missible arcs.

Rather than prove the preceding lemma formally, we will establish its
validity by sketching one of several possible ways to construct a GAP basis with

the indicated property.

A GAP Basis Construction

1) To begin, exclude from consideration all arcs whose flows equal their upper
or lower bounds. All remaining arcs are both lower leeway and upper leeway links.
(These may be called double leeway links, as contrasted to the single leeway
links that have been temporarily excluded from consideration.)

2) The subgraph induced by the remaining arcs is a forest (plus possibly some
isolated nodes). Select any origin node as a root node for each tree in the
forest, and establish the customary predecessor indexing [10, 13] for the tree.
The result is a set of trees, each member of which has the GAP structure.

3) All isolated destination nodes can now be included in this forest as follows.
There must be at least one saturated arc (i.e., whose flow equals its upper
bound) that connects to any given isolated destination node (assuming without
loss of generality %hat all bj # 0). Add one such arc and orient it from its
origin node to the destination node (i.e., making the origin node the predecessor).
This preserves the GAP structure (assuming, again without loss of generality,
that no Uij = 0).

4) The trees of the forest and any isolated origin nodes may be strung together

as follows. Establish the predecessor indexing for all trees. Select any two

trees, or one tree and an isolated origin node. Then select an arc (possibly an
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artificial arc) at its lower bound which connects the root of one of the trees
(or the isolated origin node) to a destination node of the other tree. Orient
this arc as a D-0 link, and then repeat the process until the entire graph is
connected.

The result of the foregoing process is a GAP basis since each added arc
in Step 4 has upper leeway, and further, the characterization of this arc as a
D-0 link does not require that any previous arc change its orientation.

The GAP bases clearly constitute oniy a subset of those that correspond to
a given degenerate extreme point solution--i.e., under degeneracy, many bases
exist that cannot be transformed into a GAP basis by any orientation of the arcs
or by swapping the designation of the origin nodes and the destination nodes.

In fact, we may make the following observation.

Remark 1: A basis that satisfies any of the following properties cannot be
transformed into a GAP basis: (1) there exists a node with two incident basic
arcs with O flow and two incident basic arcs with saturating flow; (2) there
exists anv subpath of the basis of three successive arcs that all have 0 flows
or all have saturating flow; (3) there exists any origin node and any destination
node such that both have more than one incident O-flow arc, or both have more
than one incident saturated arc (this includes (2) as a special case).

The forgoing remark discloses that the GAP basis structure is indeed highly

restrictive.

4. IMPORTANT PROPERTIES OF GAP BASES

We will show that for any choice of an incoming nonbasic arc in a basis
exchange (pivot) step for a primal simplex method, there is a unique outgoing

arc which can be selected to leave the basis that will maintain primal feasi-

bility and also preserve the GAP basis structure. This unique arc must be
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selected by';w;ifferent rule in each of four different situations. To charac-
terize these situations and their appropriate rules, we introduce the following
terminology.

Arc (p,q) will denote the incoming arc. The unique intersection node on
the predecessor paths from nodes Op and Dq to the root node will be denoted by
Z, where Z may in some instances be equal to Op or Dq. The predecessor paths
from Op to ZV;n&_quto Z Qill be denoted by Z-0Op and %-Dq, respectively.

Note that one of these two paths may consist of only the node % itself.

It is convenient to augment each of the paths Z-Op and Z-Dq with arc (p,q)

such that it is an 0-D link and D-0 link in the augmented paths #Z-0Op and 2-Dq,

respectively. The augmented Z-Op and #Z-Dq paths will be denoted by 2Z-0p and

Z-Dq. The terms lower and higher links will be used to refer to arcs in the #Z-Dq

and i:ag-paths according to the natural orientation imparted by the predecessor
indexing where the predecessor of any node X is considered to be above node X
itself. Thus, the lowest link in each path is arc (p,q) and the highest link
in each path are the arcs connected to node Z.

The rules for selecting the outgoing arc will now be itemized according
to the relevant possibilities:
I. The incoming arc (p,q) is a O-flow arc and T > 0. (In this case the primal

Pq
simplex method undertakes to increase the flow on arc (p,q). If A is the amount

of flow change, then all D-0 links on the &-Dq path and all 0-D links on the
5:65 path increase their flow by A. All other arcs on the paths decrease their
flow by A.) (Note that arc (p,q) is in fact a D-0 link on the i:ﬁa path and an
0-D link on the 5:65 path--hence all arcs on a given path of the same type as

(p,q) change their flow in the same way.)
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A. If any arc on the Z-Op path reaches its upper or lower bound (i.e.,

blocks additional flow change) strictly before any arc on the Z-Dq path reaches

its upper or lower bound, then the lowest arc on the Z-Op path that thus restricts
the flow change is the outgoing arc.
B. If any arc on the Z-Dq path reaches its upper or lower bound, (i.e.,

blocks flow change) at the samg time as or before any arc on the Z-0p path

reaches its upper or lower bound, then the highest arc on the Z-Dq path that

thus restricts the flow change is the outgoing arc. (Note that if arc (p,q)
is one of the first arcs to hit its limit, then this automatically qualifies as

case 1.B.)

II. The incoming arc (p,q) is an arc with saturated flow and ﬂpq < 0. (The

primal simplex method thus undertakes to decrease the flow on arc (p,q). If
the flow change is A (in absolute value) then all D-0 links on the E:Ba path
and all 0-D links on the 5:65 path are decreased by A. The remaining arcs on
these paths increase their flow by A.)

A. If any arc on the E:BE path reaches its upper or lower bound (blocks
flow change) strictly before any arc on the 2:65 path, then the lowest arc on
the E:Ba path that thus restricts the flow change is the outgoing arc.

B. 1If any arc on the 2:55 path reaches a bound at the same time or before
an arc on the 2:56 path, then the highest such arc on the 5:65 path is the
outgoing arc.

The following lemma will be used to prove that the foregoing rules preserve [~
the GAP basic structure.

Lemma 2: [f Case I.B. or II.B. applies, then the pivot is always nondegenerate.

Proof: In Case [.B., an arc on the #-Dq path provides the limitation on the

A

flow change But since each 0-D link has lower leeway and is being decreased
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» by A on this path, and since each D-0 link has upper leeway and is being in-
creased by A on this path, the value of A allowed by this path must be positive.
Similar analysis applies to Case II.B., interchanging the roles of increases
and decreases and applying them to the E:ag'path.

The significance of this lemma is apparent because if a shortcut procedure
is constructed to identify cases I.B. and II.B., this provides a method of under-
taking to make nondegenerate pivots.

Lemma‘gi__gﬁg“;ﬁles E.A., I.B.;'II.A., IT.B. preserve the GAP basis structure,
\ and moreover, are the only rules that can if the root node is unchanged.
‘ Proof: The lemma will be established for cases I.A. and I.B. The proof for
cases II.A. and II.B. is similar. Suppose I.A. applies and the indicated rule
is followed. It is important to note that maintaining the same root node
implies that the only links which will change their 0-D and D-0 link status
in the new basic are the arcs in the Z-Op path below the outgoing arc. Thus,
the proof amounts to demonstrating that the links on the basic equivalent path
satisfy the definition of a GAP basis after the basis exchange. First observe
that all links above the discarded arc on the 5:6; path retain their orientation
and their status, because the 0-D links on this path only increase their flow
and the D-0 links only decrease their flow, appropriately maintaining the lower
and upper leeway conditions. Further, all arcs on the E:BE path, including
(p,q), retain their status by assumption since none were driven to a contrary
bound. And since by assumption no arcs below the selected outgoing arc on the
2-0p path are at their bounds, these arcs are double leeway arcs and thus
qualify as arcs of the opposite status. Thus the standard rule of [10,13] for
R re-orienting the arcs of the #%-0Op path, and for attaching arc (p,q) as a D-0

link, preserves the GAP structure as desired.
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On the other hand, if I.B. applies, then no arc on the Z-Op path changes
its status. Further, nothing above the outgoing arc on the E:BE path changes
its status because no flows are driven to contrary bounds. But every arc below
the outgoing arc can change its status because, by Lemma 2, the flow change is
positive, and thus each of these arcs that previously had upper leeway now has
lower leeway, and vice versa. Thus, once again, the rule of [10,13] that
reverses the orientation of these arcs (if any exist--i.e., arc (p,q) itself
or the first arc above it may be the outgoing arc) preserves the GAP structure.

If arc (p,q) is not both the incoming and outgoing arc, then it receives the

proper orientation as an 0-D link. Finally, the foregoing observations disclose
that no other choice of an outgoing arc will work, because it would create an
0-D or D-0 link without the appropriate leeway on one of the two paths. This

completes the proof. :

5. GENERALIZED ALTERNATING PATH (GAP) ALGORITHM

On the basis of the preceding remarks, the rules of the GAP algorithm can

be stated in an extremely simple fashion.

1. Select any feasible GAP basis for the capacitated transportation

problem.

2. Successively apply the simplex pivot step keeping the root node fixed

and picking the link to leave according to rules I and IT.

The results previously established imply that the GAP algorithm will pro-
ceed through a sequence of GAP bases, bypassing all other basis structures.

Further, these results show that a "next'" GAP basis is always accessible to a

given GAP basis, so that the method will not be compelled to stop prematurely
without being able to carry out a pivot before the optimality criteria are j

satisfied.
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The issue that remains to be resolved, then, is whether the method may
progress through a closed circle of GAP bases without breaking out, and thus
fail to converge. It will be shown that this cannot happen, and that, in
fact, the GAP algorithm is finitely converging without any reliance upon ex-
ternal techniques such as perturbation, or lexicographical ordering, as is the
ordinary simplex method. Further, this result does not require any restric-
tions on the choice of the incoming variable. Most importantly, it will be
shown that the form of convergence of the GAP algorithm has a particularly
strong character, in which origin and destination node potentials each change
in a uniform direction throughout any sequence of degenerate pivots.

Our next result is the prelude to the main convergence theorem, which
requires no use of perturbation and no restriction on the choice of the in-
coming arc.

Lemma 4: The pivot step that creates one GAP basis from another causes the
node potentials to change in the following manner (holding the root node and
its node potential constant):

(i) For cases I.A. and II.A.: The potentials for a subset of the origin

nodes strictly decrease and the potentials for a subset of the destination
nodes strictly increase, where at least one of these subsets is nonempty (the
first for 1.A. and the second for II.A.). All other node potentials are un-
changed.

(ii) For cases I.B. and II.B.: The potentials for a subset of origin

nodes strictly increase and the potentials for a subset of destination nodes
strictly decrease. At least one of these subsets is nonempty (the first for
ITI.B. and the second for I.B.), unless arc (p,q) is the outgoing arc, in which

case they are both empty. All other potentials remain unchanged.




Proof: No node potentials change when arc (p,q) is both the incoming and out-
going arc. Thus assume that arc (p,q) is not the outgoing arc. In this case,
as already discussed, the node potential values that change are¢ restricted to
those associated with subtree K. By this procedure, if subtree K contains the
origin node of the entering arc then & is subtracted from all origin node
potentials in K and § is added to all destination node potentials. On the
other hand, if subtree K contains the destination node of the entering arc
then § is subtracted from all destination nodes and § is added to all origin
node potentials, where § = T = c - R - K . The assertations (i) and (ii)
Pq Pq P q
follow at once by observing that OPSK holds for cases I.A. and II.B. and

quK in cases I.B. and II.A.

Our main result may be stated as follows:

Theorem: The primal GAP basis algorithm is finite and independent of the choice

of incoming arc.

Proof: By Lemma 2, as long as case I.B. or II.B. holds, the method makes non-
degenerate pivots, of which there are a finite number. We show that the number
of degenerate pivots that can occur in unbroken succession is also finite. In
particular, these pivots must all occur for case I.A. or IT.A. But by Lemma 4,
the node potentials are changing in a uniform direction throughout each step.
Since the root node maintains a constant potential and the values of the other
potentials are thus uniquely determined for any given basis, it follows that

no basis can repeat during this succession of pivots, completing the proof.

Implementation Considerations

The rules T.A., 1.B., II.A. and TI.B. of the GAP transportation algorithm

all identify the arc to leave the basis as either the highest or lowest quali-
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fying arc on a particular segment of the basis equivalent path, thus trans-

lating a complex set of interactions into a particularly simple prescription
for implementation. This prescription is fully compatible with the use of
the specialized labeling procedures developed for implementing primal network
algorithms [4, 10, 15, 20] and consequently, the strong convergence property
of the GAP algorithm is not gained at the expense of abandoning other means
for accelerating the solution process.

Further, it is especially significant that in the only cases that afford
the opportunity for a degenerate pivot (I.A. and II.A.), the arc to leave the
basis is the lowest that qualifies on the specified path segment. This means
that, by the customary trace of predecessors, the first arc encountered that
determings the pivot to be degenerate is the one to drop. For practical pro-
blems, in which degenerate pivots have been reported to constitute 807 or
more of the total iterations, this feature is particularly convenient. More-
over, there is no disadvantage to the rule that prescribes dropping the highest
qualifying arc when the pivot is nondegenerate, because in this instance it is
necessary to conduct a full trace of the arcs of the basis equivalent path in
any event. Thus, in brief, the unique form of the GAP algorithm for the capa-
citated transportation problem is ideally suited to the use of implementation
schemes designed to minimize the calculations at each iteration, while enjoving
the benefits of the strong convergence property for circumscribing the total

number of degenerate steps.
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